TEACHING PLAN - EVEN 2021-2022

A. GENERAL INFORMATION

Name of the Faculty	:	Dr. N.Sarala
Department	:	Mathematics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	Fuzzy sets and its Applications
Lecture Hours / Practical Hours	;:	90 Hrs

Course Objectives	Course Outcomes	Teaching
		Methodology
• To introduce the fundamental	On completion of the course, the	Power Point
of Fuzzy Set Theory and its	student will be able to	• E – Module
connection with Fuzzy Logic.	• Understand the concept of fuzzy	• Chalk & Talk
• To Particular emphasis is	theory and its application in real	Method
given to a comprehensive	life problems.	• Lecture Method,
coverage of operations on	• Acquire the knowledge about the	• Laboratory Method
fuzzy sets.	uncertainty environment through	• Project Method,
• To Analyse the various types	the fuzzy sets that incorporates	Problem Solving
of Fuzzy Arithmetic	imprecision and subjectivity into	Method
Operations.	the model formulation and	
• To introduce the various	solution process.	
relations of fuzzy Relations.	• Understand the concept of fuzzy	
• The concept of fuzzy measure	numbers and linguistic variables	
is introduced.	to solving the uncertainty	
	problems.	
	Concepts and properties of crisp	
	relations are discussed and to	

demonstrate their generalized
application to fuzzy relations.
• the concept of fuzzy measure
provides general frame work for
dealing with ambiguity.

C. <u>PLAN OF THE WORK:</u>

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	Basic Concepts of Crisp sets	21.02.22	4 Hrs	-	-
	and Fuzzy set	to			
	• Additional Properties of α –	08.03.22	3 Hrs		
	cut				
	Representation of Fuzzy Set		4 Hrs		
	• Extension Principles for Fuzzy				
	set		4 Hrs		
Unit II	Types of operations		4 Hrs	-	-
	Fuzzy complements	09.03.22	4 Hrs		
	• Fuzzy Intersection: t-Norms	to	4 Hrs		
	• Fuzzy Unions: t-Conorms.	25.03.22			
	Combinations of Operations		3 Hrs		
Unit III	Fuzzy numbers	26.03.21	4 Hrs	-	-
	Linguistic variables	to	4 Hrs		
	Arithmetic operations on	13.04.22	4 Hrs		
	intervals				
	Arithmetic operations on		3 Hrs		
	Fuzzy numbers.				
Unit IV	Binary Fuzzy Relations	17.04.22	3 Hrs	-	-
	• Binary Relations on a Single	to	3 Hrs		
	Set	06.05.22			
	• Fuzzy Equivalence Relations		3 Hrs		

	Fuzzy Compatibility RelationsFuzzy Ordering Relations.		3 Hrs		
			3 Hrs		
Unit V	Individual Decision Making	09.05.22	4 Hrs	-	-
	• Multi person Decision Making	to	4 Hrs		
	• Fuzzy Ranking Method	27.05.22	4 Hrs		
	• Fuzzy Linear Programming		3 Hrs		

D. ACTIVITIES:

Activities Name	Details			
Test	Unit Test Date 09.03.22, 16.03.22, 11.4.22, 19.4.22,			
Assignment	12.5.22			
Quiz	12.3.22, 16.4.22			
Seminar	18.04.22			
Tutor Ward Meeting	04.05.22, 1.5.22			
	Every Saturday			

6

R. Dom

PRINCIPAL

A. GENERAL INFORMATION

Name of the Faculty	:	DrR.Vanitha
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Graph Theory
Lecture Hours	:	90 Hrs

Course Objectives	Course Outcomes	Teaching Methodology
• To know about graph,	Learners will be able to	Power Point
paths and circuits	• Define Basic Concepts of graph	• E – Module
• To understand the	theory and present proofs for the	• Chalk & Talk Method
concept of Trees and	most important theorems.	Lecture Method
fundamental circuits.	Compute spanning trees cut-sets	Discussion Method
• To identify cut-sets and	and cut-vertices.	Study Assignment
cut-vertices in a graph.	Identify planar graphs.	Method,
• To gain the knowledge	• Understand the Dual graphs and	Problem Solving
of Planar and Dual	matrix representation of graphs	Method
graphs	• Enumerate chromatic number and	Seminar Method
• To know the concept of	colouring of graphs	Demonstration
matrix representation		Method
of graphs and coloring		

C. <u>PLAN OF THE WORK:</u>

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Definition of graphs and	21.02.2022	2 Hrs	-	-
		examples	to			
	•	Paths and circuits	05.03.2022	5 Hrs		
	•	Euler Graphs		4Hrs		
	•	Hamiltonian paths and circuits		4 Hrs		
Unit II	•	Trees and some properties	07.03.2022	3 Hrs	-	-
	•	Distance and centers in a tree	to	4Hrs		
	•	Spanning trees	22.03.2022	4Hrs		
	•	Fundamental circuits and cut-		4Hrs		
		sets				
Unit III	•	Cut-sets and some properties		4 Hrs	-	-
	•	Fundamental circuits	23.03.2022	4 Hrs		
	•	Connectivity and separability	to	4Hrs		
	•	Network flow	09.04.2022	3Hrs		
Unit IV	•	Planar graphs		4Hrs	-	-
	•	Kuratowski's two graphs	10.04.2022	5Hrs		
	•	Detection of planarity	to	3 Hrs		
	•	Geometric Dual	25.04.2022	3Hrs		
Unit V	•	Incidence matrix	26.04.2022	3 Hrs	-	-
	•	Circuit matrix and cut-set matrix	to	4Hrs		
	•	Chromatic number and	12.05.2022			
		polynomial		4Hrs		
	•	Matchings				
				4Hrs		

D. ACTIVITIES:

Activities Name	Details	
Test	Unit Test Date: 21.03.2022, 10.04.2022,28.04.2022,15.5.22	
Assignment	22.03.2022, 10.04.2022, 22.04.2022	
Quiz	01.04.2022,19.05.2022	
Seminar	23.03.2022,11.04.2022,22.04.2022,18.05.2022	
Tutor Ward Meeting	Monthly Once	

(

R. Dom

PRINCIPAL

A.GENERAL INFORMATION

Name of the Faculty	:	Dr.R.VANITHA
Department	:	Mathematics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	Complex Analysis
Lecture Hours	:	90 Hrs

B. ABOUT THE COURSE:

Course Objectives	Course Outcomes	Teaching	
		Methodology	
• Study the concept of	Learners will be able to	Power Point	
complex integration.	• Acquired concept of	• E – Module	
• Analyze singular points,	complex integration.	• Chalk & Talk	
Taylor's series &	Apply7auchy's theorem	Method	
Cauchy's Theorem.	in complex valued	• Lecture Method	
• Advance property of	functions.	• Discussion Method	
harmonic functions.	Analyse harmonic	• Study Assignment	
• Learn about infinite Partial	function.	Method,	
fractions and Canonical	• Evaluate infinite products	Problem Solving	
Products.	and canonical products.	Method	
• Analyze relation between	• Develop the knowledge of	Seminar Method	
both Harmonic and Gamma	Gamma functions.	Demonstration	
Functions.		Method	

<u>C. PLAN OF THE WORK:</u>

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	Sets and Elements-		4 Hrs	-	-
	connectedness-compactness	21.02.2022			
	• Continuous functions -	to	4 Hrs		
	Topological spaces	05.03.2022	4 Hrs		
	Conformality				
	Linear transformation		3 Hrs		
Unit II	• Le integral- definition and		4 Hrs	-	-
	some examples	27.01.2022	3Hrs		
	• Cauchy's theorem for a	to	4 Hrs		
	rectangle	13.02.2022	4 Hrs		
	• Cauchy's theorem for a disk				
	Higher derivatives				
Unit III	Tayler's theorem		3Hrs	-	-
	• Zers and poles	15.02.2022	3Hrs		
	Simple connectivity	to	3 Hrs		
	• General Statement of Cauchy's	03.03.2022	3Hrs		
	theorem		3 Hrs		
Unit IV	Haronic function		3Hrs	-	-
	• Mean value property theorem	04.03.2022	3Hrs		
	Poisson formula	to	3Hrs		
	• Schwartz's theorem	20.03.2022	3Hrs		
	• Reflection Principle theorem.		3Hrs		
Unit V	Weierstrass theorem		4 Hrs	-	-
	• Taylor's series	22.03.2022	3Hrs		
	Partial fractions	to	4Hrs		
	Infinite product	10.04.2022	4Hrs		
	Canonical product				

D.ACTIVITIES:

Activities Name	Details
Test	Unit Test Date: 21.03.2022,10.04.2022,28.04.2022
Assignment	15.03.2022, 15.04.2022,10.5.22
Quiz	28.04.2022
Seminar	15.04.2022 to 25.04.2022
Tutor Ward Meeting	Monthly Once

(

R. Dong

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs. M. Prabavathy
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Number Theory
Lecture Hours	:	60 Hrs

B. ABOUT THE COURSE:

	Course Objectives	Course Outcomes	Teaching
			Methodology
•	To interpret the concepts of divisibility, prime number and prime- factorization. To learn some kind of number theoretic functions such as Greatest integer function, Mobius function. To know about famous conjectures in number theory. To acquire the	 Learners will be able to State the nature of find the prime factorization and divisor, sum, product of a given natural number. Understand the concept of Mobius function, Mobius Inversion formula and Mobius pair. Gain knowledge about Famous conjectures in number theory . Solve System of linear congruences using the well-known Chinese Remainder 	 Power Point E - Module Chalk & Talk Method Lecture Method Discussion Method Study Assignment Method, Problem Solving Method Seminar Method Demonstration Method
	-		

C. <u>PLAN OF THE WORK:</u>

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Prime and composite numbers , Coprimes and Sieve of Eratothenes Euclid's theorem Unique factorization, Fundamental theorem of Arithmetic Positional representation of Integers. Number of divisors,Sum of divisors, Arithmetic functions.	21.02.2022 to 10.03.2022	2 Hrs 3 Hrs 2 Hrs	-	-

Unit II	 Perfect number integer function Mobious function and Inversion formula and its converse 	11.03.2022 to 26.03.2022	2 Hrs 3 Hrs 3 Hrs 3 Hrs	-	-
Unit III	 Distribution of Primes Fermat conjecture, Fermat numbers and Gold Bach' S conjecture Mersenne numbers, Gap theorem and Infinity of primes 	28.03.2022 to 13.04.2022	3 Hrs 3 Hrs 3 Hrs	-	-
Unit IV	 Congruence : Definition and Residue classes Complete and least residue system Linear congruences Solution of congruences and Chinese remainder theorem 	18.04.2022 to 05.04.2022	2 Hrs 2 Hrs 3 Hrs 2 Hrs	-	-
Unit V	• Quadratic reciprocity:Quadratic residues and non residues,Eulers Criterion.	06.04.2022 to 25.04.2022	3 Hrs 3 Hrs	-	-

Primitive roots is a		
quadratic non residues,	3 Hrs	
Legendre symbol	5 1115	
Gauss lemma and		
Quadratic reciprocity law		

D. ACTIVITIES:

Activities Name	Details		
Test	Unit Test Date: 28.03.2022, 26.04.2022,20.05.2022		
Assignment	22.03.2022, 10.04.2022 and 12.05.2022		
Quiz			
Seminar	01.05.2022,04.06.2022		
Tutor Ward Meeting	23.04.2022,11.05.2022,12.05.2022,18.05.2022		
Mentor Mentee Meeting	Monthly Once		
	Weekly Once		

(

R. Don

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name o. f the Faculty	:	Mrs. M. Prabavathy
Department	:	Mathematics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	Functional Analysis
Lecture Hours	:	90 Hrs

B. ABOUT THE COURSE:

Course Objectives	Course Outcomes	Teaching
		Methodology
 To learn the concepts of Banach Spaces, Bounded linear operators, Reflexive spaces. To study the three structure theorems of Functional Analysis viz., Hahn-Banach theorem, Open mapping theorem and Uniform boundedness principle. To acquire knowledge about Hilbert spaces and operator theory on Hilbert spaces. To know the proof of well known spectral mapping theorem. To gain a knowledge about Banach algebra and spectral theory on 	 Learners will be able to Understand the concept of Normed linear spaces,dual spaces,weak convergence. Apply the idea of the Hahn Banach theorem and open mapping theorem. Analyze linear operators on a Hilbert space. Evaluate Orthonormal basis. Demonstrate spectral theory. 	 Power Point E - Module Chalk & Talk Method Lecture Method Discussion Method Study Assignment Method, Problem Solving Method Seminar Method Demonstration Method

Banach algebra.		
-----------------	--	--

C. <u>PLAN OF THE WORK:</u>

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	The definition and some		4 Hrs	-	-
	•	examples Continuous linear	21.02.2022	4 Hrs		
		transformations	to	4 Hrs		
	•	The Hahn-Banach theorem The natural imbedding of N in	11.03.2022	3 Hrs		
		N**				
Unit II	•	The definition and some simple		4 Hrs	-	-
	•	properties Orthogonal complements	12.03.2022	4 Hrs		
	•	Orthonormal sets	to 28.03.2022	4 Hrs		
	•	The conjugate space H*		3 Hrs		
Unit III	•	The open mapping theorem		5 Hrs	-	-
		and the conjugate of an operator	29.03.2022	2 Hrs		
	•	The adjoint of an operator	to 19.04.2022	3 Hrs		
	•	Self-adjoint operators		2 Hrs		
	•	Normal & unitary operators Projections		3 Hrs		

Unit IV	 Matrices and Determinants The spectrum of an operator The spectral theorem, A survey of the situation 	20.04.2022 to 09.05.2022	5 Hrs 4 Hrs 6 Hrs	-	-
Unit V	 The definition & some examples Regular and singular elements Topological divisor of zero and the spectrum, formula for the spectral radius The radical & semi-simplicity. 	10.05.2022 to 26.05.2022	4 Hrs 3 Hrs 4 Hrs 4 Hrs	-	-

D. <u>ACTIVITIES:</u>

Activities Name	Details
Test	Unit Test Date: 27.03.2022,18.04.2022,04.05.2022
Assignment	05.04.2022, 18.05.2022
Quiz	12.05.2022
Seminar	15.05.2022 to 25.05.2022
Tutor Ward Meeting	Monthly Once

Weekly Once

¢

¢

R. Dr

PRINCIPAL

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs.M.Prabavathy
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Environmental Studies
Lecture Hours	:	30 Hrs

Course Objectives	Course Outcomes	Teaching Methodology
Tolearnthemultidisciplinary nature ofenvironmental studies(a).Definition(b). Scopeandimportancepublic Awareness	 Learners will be able to Understand the importance of natural resources Learn the energy needs. Interpret social issues 	 E - Module Chalk & Talk Method Lecture Method Discussion Method Study Assignment Method Seminar Method Demonstration Method

C. <u>PLAN OF THE WORK:</u>

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
	 Definition, scope and importance of Environmental studies Natural Resources: Use and over Exploitation, deforestation timber extraction, mining, clams and their effects on forests and their effects on forests and tribal people. Water Resources: Use and over Exploitation of surface and ground water Mineral Resources: Use and over Exploitation, function, Environmental Effects of extracting and using Mineral Resources. 	_			Remarks
	 Food Resources: Changes caused by agriculture and over grazing effects of modern agriculture, fertilizer pesticide problems 				
Unit III	GlowingEnergyneedsRenewableand Non - renewable	10.04.2022 to	6 Hrs	-	-

Energy Resources - Role of an 30.04.2022 individual in conservation of natural Resources. Ecosystems and Biodiversity (a) Concept of an Ecosystem (b) Structure and function of an Ecosystem (c) Producers, Consumers and Decomposers (d) Energy flow in the Ecosystem (e) Structure and function of the following ecosystem (1) Forest Ecosystem (2) Pond Ecosystem	
natural Resources.Ecosystems and Biodiversity(a) Concept of an Ecosystem(b) Structure and function of an Ecosystem(c) Producers, Consumers and Decomposers(d) Energy flow in the Ecosystem(e) Structure and function of the following ecosystem (1) Forest Ecosystem	
Ecosystems and Biodiversity (a) Concept of an Ecosystem (b) Structure and function of an Ecosystem (c) Producers, Consumers and Decomposers (d) Energy flow in the Ecosystem (e) Structure and function of the following ecosystem (1) Forest Ecosystem	
 (a) Concept of an Ecosystem (b) Structure and function of an Ecosystem (c) Producers, Consumers and Decomposers (d) Energy flow in the Ecosystem (e) Structure and function of the following ecosystem (1) Forest Ecosystem 	
 (b) Structure and function of an Ecosystem (c) Producers, Consumers and Decomposers (d) Energy flow in the Ecosystem (e) Structure and function of the following ecosystem (1) Forest Ecosystem 	
an Ecosystem(c) Producers, Consumersand Decomposers(d) Energy flow in theEcosystem(e) Structure and function ofthe following ecosystem(1) Forest Ecosystem	
 (c) Producers, Consumers and Decomposers (d) Energy flow in the Ecosystem (e) Structure and function of the following ecosystem (1) Forest Ecosystem 	
(d) Energy flow in the Ecosystem(e) Structure and function of the following ecosystem (1) Forest Ecosystem	
Ecosystem(e) Structure and function of the following ecosystem (1) Forest Ecosystem	
(e) Structure and function of the following ecosystem (1) Forest Ecosystem	
the following ecosystem (1) Forest Ecosystem	
(1) Forest Ecosystem	
(2) Pond Ecosystem	
Unit IV Biodiversity – definition – Types 01.05.2022 to 6 Hrs - -	
– Genetic species and ecosystem, 18.05.2022	
diversity	
(a) Values of biodiversity	
(b) India as a mega –	
diversity nation	
Environmental pollution:	
(a) Air Pollution	
(b)Water Pollution	
(c) Soil Pollution	
(d)Marine Pollution	
(e) Noise Pollution	
(f) Solid Waste Management	
causes and effects and	

					,1
	control measures of				
	urban and industrial				
	wastes and ecosystem.				
	(g) Role of an individual in				
	prevention of pollution				
	(h) Disaster management,				
	floods, earthquake and				
	cyclone.				
Unit V	Social issues and the	19.05.2022 to	6 Hrs	-	-
	environment	07.06.2022			
	(a) Water conservation, rain				
	water harvesting and				
	water shed management				
	(b) Environmental Protection				
	Act				
	(c) Public Awareness				
	(d) Environment and Human				
	Health				
	(e) Women and Child Care				
	(f) Role of Information				
	Technology in				
	environment and human				
	health.				

D. ACTIVITIES:

Activities Name	Details		
Test	Unit Test Date: 26.03.2022, 28.04.2022		
Assignment	12.04.2022, 08.05.2022		
Quiz	18.05.2022		
Seminar	11.04.2022, 18.05.2022, 02.06.2022		
Tutor Ward Meeting	Monthly Once		
Mentor Mentee Meeting	Weekly Once		

(

R. Don

PRINCIPAL

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.G.SUDHA
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Complex Analysis
Lecture Hours	:	90 Hrs

Course Objectives	Course Outcomes	Teaching Methodology	
• To provide the	Learners will be able to	Power Point	
knowledge about	• Understand the basic concepts of	• E – Module	
analytic functions.	complex numbers and Cauchy-	• Chalk & Talk Method	
• To acquire the	Riemann equations in Cartesian	Lecture Method	
Knowledge in	and polar coordinates	• Discussion Method	
elementary and bilinear	• Know the analytic functions,	Study Assignment	
transformations.	harmonic functions ,elementary	Method,	
• To explore the Complex	and bilinear transformation	Problem Solving	
Integration.	concepts.	Method	
• To develop the series	• Understand the applications of	Seminar Method	
expansions	complex integrations.	Demonstration	
• To find the residues	• 4 Understand the series	Method	
using poles	expansions of Taylor's and		
	Laurent's series.		
	• Solve the definite integrals using		
	the concepts of residues.		

C. PLAN OF THE WORK:

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Functions of complex	21.02.2022	3 Hrs	-	-
		variable	to	4 Hrs		
	•	C.R. Equations	28.02.2022	4 Hrs		
	•	Analytic functions		4 Hrs		
	•	Harmonic functions.				
Unit II	•	Elementary transformation	01.03.2022	4 Hrs		
	•	Bilinear transformation	to	4 Hrs		
	•	Cross ratio	21.03.2022	3 Hrs		
	•	Fixed points of bilinear		4 Hrs		
		transformation				
Unit III	•	Definite integral	22.03.2022	4 Hrs	-	-
	•	Cauchy's theorem	to	4 Hrs		
	•	Cauchy's integral formula	18.04.2022	3 Hrs		
	•	Higher derivatives.		4 Hrs		
Unit IV	•	Taylor's series		4 Hrs	-	-
	•	Laurent series	19.04.2022	4 Hrs		
	•	zeros of analytic functions	to	3 Hrs		
	•	Singularities	30.04.2022	4 Hrs		
Unit V	•	Residues		5 Hrs	-	-
	•	Cauchy's residue theorem	02.05.2022	5 Hrs		
	•	Evaluation of definite	to	5 Hrs		
		integrals .	20.05.2022			

D. ACTIVITIES:

Activities Name	Details
Test	Unit Test Date: 21.03.2022, 10.04.2022, 28.04.2022
Assignment	15.03.2022, 15.04.2022, 10.05.2022
Quiz	28.04.2022
Seminar	15.04.2022 to 25.04.2022
Tutor Ward Meeting	Every Saturday
	1

(

R. Dom

PRINCIPAL

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.G.SUDHA
Department	:	Mathematics
Programme	:	M. Sc
Programme Code	:	PSM
Name of the Paper	:	Differential Geometry and Tensors
Lecture Hours	:	90 Hrs

Course Objectives	Course Outcomes	Teaching Methodology
• To introduce the	Learners will able to	Power Point
notion of surfaces and	• Understand the concept of	• E – Module
their properties.	Vector fields.	• Chalk & Talk
• To study geodesics	• Analyze surfaces and Vector	Method
and differential	field on surfaces.	Lecture Method
geometry of surfaces.	• Understand Gauss map-	Discussion Method
• Make the student to	Geodesics.	• Study Assignment
learn about tangent	• Acquired knowledge about the	Method,
spaces, surfaces,	scope of tensor analysis.	Problem Solving
Gauss map,	• Find the proof of theorems	Method
• To develop the Scope	under the application of	Seminar Method
of Tensor Analysis.	Christoffel's Symbols.	Demonstration
• To know the concepts,		Method
Geodesics on surfaces		
and curvature of		
plane curves.		

C. PLAN OF THE WORK:

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Theory of space curves		4 Hrs	-	-
	•	Arc length, Tangent and	28.01.2022	4 Hrs		
		Osculating Plane	to			
	•	Curvature and Torsion	16.02.2022	4 Hrs		
	•	Osculating Circle and		3 Hrs		
		Osculating Sphere				
Unit II	•	Surface and Nature of the		3 Hrs	-	-
		points	17.02.2022			
	•	Tangent plane and Surface	to	4 Hrs		
		normal	11.03.2022			
	•	Helicoids		4 Hrs		
	•	Metric on a surface and First		4 Hrs		
		fundamental Theorem				
Unit III	•	Tensor notations- Christoffel		2 Hrs	-	-
		Symbol	12.03.2022-			
	•	Gauss Equations	to	2 Hrs		
	•	Weingarten Equations	18.04.2022	2 Hrs		
	•	Mainardi Codazzi Equations		3 Hrs		
Unit IV	•	Invariance		1 Hr	-	-
	•	Transformation of co-		1 Hr		
		ordinates- Properties of				
		Admissible Transformation of		1 Hr		
		co-ordinates				
	•	Transformation by variance		1 Hr		
		and contra variance				
	•	Contra variant and covariant	19.04.2022	1 Hr		
			to			

		Tensors	30.04.2022	1 Hr		
	•	Tensor character of covariant				
		and contra variant laws		1 Hr		
	•	Algebra of tensors, Quotient				
		laws		2 Hr		
	•	Symmetric and Skew				
		Symmetric Tensors – Relative				
		Tensors				
Unit V	•	Christoffel's Symbols		3 Hr	-	-
	•	Transformation of				
		Christoffel's Symbols		2 Hr		
	•	Covariant differentiation of		3 Hr		
		Tensors				
	•	Ricci's Theorem- Ricci Tensor	0205.2022	2 Hr		
	•	Riemann Christoffel Tensor-	to	2 Hr		
		Properties of Riemann Tensor	20.05.2022			
	•	Bianchi's Identities		2 Hr		
	•	Einstein Tensor		1 Hr		

ACTIVITIES:

Activities Name	Details
Unit Test	21.03.2022, 12.04.2022, 06.05.2022
Assignment	16.02.2022, 25.03.2022, 25.04.2022
Quiz	18.04.2022
Seminar	28.04.2022, 04.05.2022, 09.05.2022, 12.05.2022, 16.05.2022, 17.05.2022, 18.05.2022

C

R. Dom

PRINCIPAL

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.G.SUDHA
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Numerical Methods with C Programming (P)
Lecture Hours	:	30 Hrs

Course Objectives	Course Outcomes	Teaching
		Methodology
• Logics, variables, constants, expressions	The student will be able to	• Chalk & Talk
and operators which will help them to	understand,	Method
create programs, applications in C.	• Declaration of variables,	• Lecture
• Learning the basic	constants, expressions and	Method
programming construction	operators.	• Discussion
and functions to modify the	• Declaration and uses of	Method
programs in programming in	functions and arrays.	
С.	• develop their programming	
• Programming skills to use conditional	skills with programming	
statements, user defined functions,	environment with C	
arrays.	program structure.	
•	• Learn how to obtain	
he objective of the course is to	numerical solution of	
familiarize the students about different	nonlinear equations using	
numerical techniques.	bisection, secant, Newton	

olving algebraic and transcendental equations, large linear system of equations, differential equations, approximating functions by polynomials upto a given desired accuracy, finding approximate value of definite integrals of functions etc. and to solve numerical problems using C. and fixed-point iterations methods and convergence analysis of these methods.

- Solve simultaneous system of equations numerically.
- Familiar with calculation and interpretation of errors in numerical method.
- Familiar with programming with numerical packages like C Progamming.

C. <u>PLAN OF THE WORK:</u>

•

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
UNIT I	 Solving a Quadratic Equation. Sum of series (Sine, Cosine, e^x) Ascending and descending order of numbers. 	28.01.2022 to 16.02.2022		6 Hrs	-
UNIT II	 Largest and smallest of given numbers. Sorting names in alphabetical order. Finding factorial, generating Fibonacci numbers using recursive 	17.02.2022 to 11.03.2022		6 Hrs	-

	functions.		
UNIT III	 Matrix Manipulations (Addition, subtraction and Multiplication). Mean Standard Deviation and Variance. Solving equations by Bisection method 	12.03.2022- to 18.04.2022	6 Hrs
UNIT IV	 Solving equations by False position method Solving equations by Newton –Raphson method Gauss elimination method of solving simultaneous equations 	19.04.2022 to 30.04.2022	6 Hrs
UNIT V	 GAUSS-Seidel method of solving simultaneous equations Euler method ,Trapesoidel and Simpson's 1/3 rd rule of integration R-K Fourth order method of solving differential equations. 	0205.2022 to 20.05.2022	6 Hrs

D. <u>ACTIVITIES:</u>

Activities Name	Details
Test	Program Test Date: 21.03.2022, 12.04.2022, 06.05.2022
Assignment	-
Quiz	-
Seminar	-
Tutor Ward Meeting	Every Saturday

¢

R. Dom

PRINCIPAL

TEACHING PLAN - EVEN SEMESTER

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs.P.Hameetha Begum
Department	:	Mathematics
Programme	:	B.Sc (Mathematics)
Programme Code	:	USM
Name of the Paper	:	Sequences & Series
Lecture Hours	:	60 Hrs

Course Objectives	Course Outcomes	Teaching
		Methodology
• To lay a good foundation for	Learners will be able to	Power Point
sequences.	• Calculate the limits of	• E – Module
• To study the behaviour of	sequences and to work with	• Chalk & Talk
series and its convergence.	the infinite sequences.	Method
• To find the convergence of	• Interpret the concepts of series	• Lecture Method
series using different tests.	as the sum of a sequence.	Discussion Method
• To learn about the Binomial	• Apply the various techniques	• Study Assignment
Theorem, Exponential series	in testing the convergence of	Method,
and Logarithmic series.	the series.	Problem Solving
• To acquire the knowledge of	• Find the missing term and the	Method
summing of series.	greatest term of a series using	• Seminar Method
	Binomial expansion.	Demonstration
	• Evaluate the summation of	Method
	some difference series.	

C. <u>PLAN OF THE WORK:</u>

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Limit of a sequence &		3 Hrs	-	-
		Convergence Theorems on	21.02.2022			
		limits	to			
	•	Cauchy's first Theorem on limit,	05.03.2022			
		Upper and lower bounds of an		3 Hrs		
		aggregate				
	•	Bounded sequences , Upper and				
		lower limits of a sequence -		3 Hrs		
		Cauchy's general principle of				
		convergence				
	•	Monotonic sequence,		3 Hrs		
		Monotonic sequence always				
		tends to a limit finite or infinite.				
Unit II	•	Sum to infinity – Definition of		4 Hrs	-	-
		convergence, divergence and	07.03.2022			
		oscillation	to			
	•	convergence of Geometric	22.03.2022	4 Hrs		
		series, some general theorems				
		on infinite series				
	•	Series of positive terms -		4 Hrs	Σ	
		Comparison tests , Convergence				
		of summation 1/n^k, D'				
		Alembert's ratio test, Raabe's				
		test, Simple Problems.				
Unit III	•	Cauchy's Condensation test	23.03.2022	4 Hrs	-	-
	•	Cauchy's root test - Simple	to	4 Hrs		
		problems	09.04.2022			
	•	Alternating series with		4 Hrs		

		problems.				
Unit IV	•	Binomial Theorem for a		4 Hrs	-	-
		rational index	11.04.2022			
	•	Exponential and Logarithmic	to	3 Hrs		
		series	25.04.2022			
	•	Summation of series		3 Hrs		
	•	Approximations using these		2 Hrs		
		theorems.				
Unit V	•	General summation of series	26.04.2022	6 Hrs	-	-
		successive difference series	to			
	•	Recurring series.	12.05.2022	6 Hrs		

D. ACTIVITIES:

Activities Name	Details		
Test	Unit Test Date: 15.03.2022,6.04.2022, 9.05.2022		
Assignment	18.03.2022, 13.04.2022.16.05.2022		
Quiz	18.04.2022,25.05.2022 (Objective Type Questions)		
Seminar	10.03.2022, 29.03.2022, 08.04.2022, 29.04.2022		
Tutor Ward Meeting	Monthly Once		
Mentor Mentee Meeting	Weekly Once		

"

R. Dom

PRINCIPAL

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs.P.Hameetha Begum
Department	:	Mathematics
Programme	:	M.Sc (Mathematics)
Programme Code	:	PSM
Name of the Paper	:	Linear Algebra
Lecture Hours	:	90 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching Methodology
• To learn the various	Learners will be able to	Power Point
aspects of systems of	• Develop the	• E – Module
Linear equations.	knowledge about	• Chalk & Talk Method
	application of	Lecture Method
• To know the	matrices in solving	Discussion Method
representations of	linear equations.	• Study Assignment Method,
transformations by	• Represent the linear	Problem Solving Method
Matrices.	transformations by	Seminar Method
	matrices.	Demonstration Method
• To study Algebra of	• Acquire the	
Polynomials.	knowledge of Algebra	
	of Polynomials	
• To acquire the	• Apply the concepts of	
knowledge of	the Primary	

Determinants and its	Decomposition	
Properties.	Theorem	
	• Determine the	
• To interpret the	uniqueness of	
importance of	determinants and	
Diagonalization and	annihilating	
the Primary	polynomials.	
Decomposition		
Theorem.		

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	• Systems of linear Equations	21.02.2022	3 Hrs	-	-
	• Matrices and Elementary	to	3 Hrs		
	Row operations	07.03.2022			
	Row-reduced echelon		3 Hrs		
	Matrices		3 Hrs		
	Matrix Multiplication		3 Hrs		
	Invertible Matrices		3 Hrs		
	Bases and Dimension				
		00.00.0000	2.11		
Unit II	• The Algebra of linear	08.03.2022	3 Hrs	-	-
	transformations	to			
	• Isomorphism of Vector	22.03.2022	3 Hrs		
	Spaces				
	• Representations of Linear				
	Transformations by		3 Hrs		
	Matrices				

	Linear Functionals		3 Hrs		
	• The Double Dual		3 Hrs		
	• The Transpose of a Linear		3 Hrs		
	Transformation				
Unit III	• The algebra of polynomials		3 Hrs	-	-
	Lagrange Interpolation	23.03.2022	3 Hrs		
	Polynomial Ideals	to	3 Hrs		
	• The prime factorization of a	09.04.2022	3 Hrs		
	polynomial				
	Commutative rings		3 Hrs		
	Determinant functions		3 Hrs		
Unit IV	Permutations and the		4 Hrs	-	-
	uniqueness of determinants	11.04.2022			
	Classical Adjoint of a	to	4 Hrs		
	(square) matrix	25.04.2022			
	• Inverse of an invertible		4 Hrs		
	matrix using determinants				
	Characteristic values		3 Hrs		
	Annihilating polynomials		3 Hrs		
Unit V	Invariant subspaces	26.04.2022	4 Hrs	-	-
	Simultaneous triangulation	to	4 Hrs		
	and simultaneous	12.05.2022			
	Diagonalization		4 Hrs		
	• Direct-sum Decompositions		3 Hrs		
	• Invariant Direct sums		3 Hrs		
	• Primary Decomposition				
	theorem				

D. ACTIVITIES:

Activities Name	Details		
Test	Unit Test Date: 15.03.2022, 6.04.2022, 9.05.2022		
Assignment	18.03.2022, 13.04.2022.16.05.2022		
Quiz	18.04.2022,25.05.2022 (Objective Type Questions)		
Seminar	25.04.2022 to 20.05.2022		
Tutor Ward Meeting	Monthly Once		
Mentor Mentee Meeting	Weekly Once		

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.P.Jamuna devi
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Astronomy
Lecture Hours	:	90 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching Methodology
• Introduce the	On completion of the course,	Power Point
exciting world of	learners will be able to	• E – Module
astronomy to the	• Gain the knowledge to	• Chalk & Talk Method
learners.	use mathematics to	• Lecture Method
• Help the learners to	perform calculations on	Discussion Method
study spherical	celestial bodies.	• Study Assignment
trigonometry in the	• Understand the use of our	Method,
field of astronomy.	galaxy to contrast and	Problem Solving
Conceptualize the	compare it with other	Method
structure of the solar	galaxies as to type,	Seminar Method
system and the	content, age, luminosity,	Demonstration
universe	motion and size.	Method
• Classify and explain	Apply the principle	
the reason for the	findings, common	
differences between	applications, current	
the planets in our	problems, fundamental	
solar system, stars in	techniques and	
the sky and types of	underlying theory of the	
galaxies in the	astronomy.	

Analyze the size, age
structure and motion of
the universe over all
using cosmological
models.
• Understand the phases of
moon and occurrence of
Eclipse.

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Module		date	Hrs	Hrs	
S					
Unit I	Relevant properties of a sphere	04.01.2022	3 Hrs	-	-
	Relevant formulae of Spherical	to			
	trigonometry.	20.01.2022	3 Hrs		
	Celestial Sphere		3 Hrs		
	Celestial coordinates		3 Hrs		
	Simple problems		3 Hrs		
Unit II	• The Earth	25.01.2022	2 Hrs	-	-
	• Zones of Earth	to	3 Hrs		
	• Dip of Horizon	08.02.2022	4 Hrs		
	• Twilight		4 Hrs		
	Simple Problems		2 Hrs		
Unit III	Astronomical Refraction		3 Hrs	-	-
	Tangent Formulae	11.02.2022	3 Hrs		
	Cassini's Formulae	to	3 Hrs		
	• Properties	26.02.2022	3 Hrs		
	Simple Problems		3 Hrs		

Unit IV	Keplers laws of Planetary motion		3 Hrs	-	-
	Newton's Deductions	01.03.2022	3 Hrs		
	Three Anomalies of Earth	to	3 Hrs		
	Relations between them	11.03.2022	3 Hrs		
	Simple Problems		3 Hrs		
Unit V	• Moon	12.03.2022	3 Hrs	-	-
	Phases of moon	to	3 Hrs		
	Harvest moon, Metonic Cycle	29.03.2022	3 Hrs		
	• Lunar Mountain, Earth Shine, tides		3 Hrs		
	• Eclipses		3 Hrs		

D. ACTIVITIES:

Activities Name	Details	
Test	Unit Test Date: 21.01.2022, 09.02.2022,28.02.2022	
Assignment	22.01.2022, 10.02.2022.12.03.2022	
Quiz	01.03.2022,13.03.2022(Objective Type Questions)	
Seminar	23.01.2022,11.02.2022,02.03.2022,18.03.2022	
Tutor Ward Meeting	Monthly Once	
Mentor Mentee Meeting	Weekly Once	

"

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.P.Jamuna Devi
Department	:	Mathematics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	PARTIAL DIFFERENTIAL EQUATIONS
Lecture Hours	:	90 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives		Course Outcomes	Teaching
			Methodology
•	To give an in-depth	On completion of the course, the	Power Point
	knowledge of solving partial	learners will be able to	• E – Module
	differential equations and	• Understand the concept of	Chalk & Talk
	apply them in scientific and	classification of pde and solve	Method
	engineering problems.	Pfaffian differential equations.	• Lecture Method
•	To study the other aspects of	Apply Charpit's method and	• Discussion Method
	PDE	Jacobi's method in solving pde	Study Assignment
•	To familiar with the modeling	and also have knowledge in	Method,
	assumptions and derivatives	solving non-linear PDE	Problem Solving
	that lead to Partial Differential	• Solve second order PDE and	Method
	Equations	apply them in real life problems.	Seminar Method
•	Be competent using classical	Analyze various techniques	Demonstration
	solution methods	involved in solving boundary	Method
•	Recognize the major	value problem.	
	classification of PDE's and the	• Solve Wave equation and Heat	
	qualitative differences	conduction Equation using PDE.	
	between the classes of		
	Equations		

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	First Order P.D.E		2 Hrs	-	-
	•	Curves and Surfaces	04.01.2022	2 Hrs		
	•	Genesis of first order	to			
		P.D.E.Classification of integrals ,	25.01.2022	3 Hrs		
		linear equations of the first				
		order				
	•	Pfaffian differential equations		4 Hrs		
	•	Compatible systems.		4 Hrs		
Unit II	•	Charpit's method		3 Hrs	-	-
	•	Jacobi's method	27.01.2022	3 Hrs		
	•	Integral surfaces through a	to	3 Hrs		
		given curve	14.02.2022			
	•	Non-linear first order P.D.E.		3 Hrs		
	•	The definition and some simple		3 Hrs		
		properties				
Unit III	•	Second Order P.D.E – Genesis of		3 Hrs	-	-
		second order P.D.E.	15.02.2022			
	•	Classification of second order	to			
		P.D.E,Tne dimensional wave	03.03.2022	3 Hrs		
		equation				
	•	Vibration of a infinite string		3 Hrs		
	•	Vibration of a Semi-infinite				
		string		3 Hrs		
	•	Vibration of a string of finite				
		length –Vibration of a string of		3 Hrs		
		finite length (Method of				
		separation of variables).				

Unit IV	Laplace's equation		2 Hrs	-	-
	Boundary value problems	04.03.2022	2 Hrs		
	Maximum and minimum	to	2 Hrs		
	principles	21.03.2022			
	• The cauchy problem		3 Hrs		
	• The dirichlet problem for the				
	upper half plane		3 Hrs		
	• The Neumann problem for the				
	upper half plane.		3 Hrs		
Unit V	Heat conduction problem		2 Hrs	-	-
	Infinite rod case	22.03.2022	2 Hrs		
	• Finite rod case	to	2 Hrs		
	Duhamel's principle	10.04.2022	2 Hrs		
	Wave equation		2 Hrs		
	Heat conduction equation		3 Hrs		
	• Kelvin's inversion theorem.		2 Hrs		

ACTIVITIES:

Activities Name	Details
Test	Unit Test Date: 27.01.2022,15.02.2022,04.03.2022
Assignment	05.03.2022, 18.03.2022
Quiz	12.04.2022(Objective Type Questions)
Seminar	15.02.2022 to 25.02.2022
Tutor Ward Meeting	Monthly Once
Mentor Mentee Meeting	Weekly Once

¢

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs.U.Elayarani
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Numerical Methods with C Programming (T)
Lecture Hours	:	48 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching Methodology
• Logics, variables, constants,	The student will be able to	Power Point
expressions and operators which	understand,	• E – Module
will help them to create programs,	• Declaration of variables,	• Chalk & Talk Method
applications in C.	constants, expressions and	• Lecture Method
• Learning the basic programming	operators.	Discussion Method
construction and functions to modify	• Declaration and uses of	Study Assignment
the programs in programming in C.	functions and arrays.	Method,
• Programming skills to use conditional	Develop their	Problem Solving
statements, user defined functions,	programming skills with	Method
arrays.	programming environment	Seminar Method
• The objective of the course is to	with C program structure.	Demonstration Method
familiarize the students about	• Learn how to obtain	
different numerical techniques.	numerical solution of	
Solving algebraic and transcendental	nonlinear equations using	
equations, large linear system of	bisection, secant, Newton	
equations, differential equations,	and fixed-point iterations	
approximating functions by	methods and convergence	

polynomials upto a given desired	analysis of these methods.
accuracy, finding approximate value	• Solve simultaneous system
of definite integrals of functions etc.	of equations numerically.
and to solve numerical problems	Familiar with calculation
using C.	and interpretation of
	errors in numerical
	method.
	Familiar with
	programming with
	numerical packages like C
	Progamming.

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Structure of C programs-	21.02.2022	3 Hrs	-	-
		Constants, Variables and	to			
		Data types	18.03.2022			
	•	Operators and Expressions-		3 Hrs		
		Mathematical functions				
	•	Input and output operators.		3 Hrs		
Unit III	•	Handling of character strings	21.03.2022	4 Hrs	-	-
		- Arithmetic operations on	to			
		characters	04.04.2022			
	•	String handling functions		3 Hrs		
	•	User defined functions -				
		Recursion.				
				2 Hrs		
Unit IV	•	Bisection method, false		3 Hrs	-	-
		position method and Newton	05.04.2022			
		Raphson method	to			
	•	Solving simultaneous	20.04.2022	3 Hrs		

		algebraic equations - Gauss-		3 Hrs		
		Seidel method				
	•	Gauss elimination method.				
Unit V	•	Newtons forward and		3 Hrs	-	-
		backward difference	21.04.2022			
		formulae	to			
	•	Lagranges interpolation	05.05.2022	3 Hrs		
		formula –				
	•	Numerical integration using				
		Trapezoidal and Simpsons		3 Hrs		
		one-third rules				
	•	Solution of ODE"s - Euler				
		method and Runge-Kutta				
		fourth order method.				
				3 Hrs		

ACTIVITIES:

Activities Name	Details		
Test	Unit Test Date: 28.02.2022, 14.03.2022, 04.04.2022, 06.05.2022		
Assignment	22.03.2022, 15.03.2022,27.04.2022		
Quiz	20.05.2022		
Seminar	20.05.2022,22.05.2022,03		
Tutor Ward Meeting	Every Saturday		

"

R. Dom >

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs.U.Elayarani
Department	:	Mathematics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	Classical Dynamics
Lecture Hours	:	90 Hrs

B. ABOUT THE COURSE:

Course Objectives	Course Outcomes	Teaching Methodology
• To give a detailed knowledge of	On completion of the course,	Power Point
the mechanical system of	the student will be able to	• E – Module
particles.	• Understand a detailed	• Chalk & Talk Method
• To formulate Lagrange's	knowledge of the mechanical	• Lecture Method
Equations of motion for the set	system of particles.	Discussion Method
of generalized coordinates.	Analyse the lagrange's	• Study Assignment
• To study some special	equations of motion for the	Method,
applications of Lagrange's	set of generalized	Problem Solving
Equations like Rayleigh's	coordinates.	Method
Dissipation function and	Develop some special	Seminar Method
Gyroscopic systems.	applications of lagrange's	• Demonstration
• To develop the applications of	equations like rayleigh's	Method
Hamilton's equations.	dissipation function and	
• To study the applications of	gyroscopic systems.	
Hamilton – Jacobi Equation.	• Understand the applications	
	of hamilton's equations.	
	• Understand the applications	

of Hamilton – Jacobi	
Equation.	

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	• Introductory concepts: The	21.02.2022	5 Hrs	-	-
	Mechanical System	to			
	• Generalised Co-ordinates –	18.03.2022	5 Hrs		
	Constraints				
	• Virtual Work – Energy &		5 Hrs		
	Momentum.				
Unit II	Lagrange's Equations:	21.03.2022	6 Hrs	-	-
	Derivation of Lagrange's	to			
	Equations –	04.04.2022			
	• Examples		4 Hrs		
	• Integrals of the Motion.		5 Hrs		
Unit III	Special Applications of		4 Hrs	-	-
	Lagrange's Equations:	05.04.2022			
	Rayleigh's Dissipation function	to			
	Impulsive Motion	20.04.2022	3 Hrs		
	Gyroscopic Systems		4 Hrs		
	• Velocity – Dependent		4 Hrs		
	Potentials.				
Unit IV	Hamilton's Equations:		5 Hrs	-	-
	Hamilton's Principle	21.04.2022			
	Hamilton's Equations	to	5 Hrs		
	• Other Variational Principles.	05.05.2022	5 Hrs		
Unit V	• Hamilton - Jacobi Theory :	06.05.2022	5 Hrs	-	-
	Hamilton's Principle function	to			

•	The Hamilton - Jacobi Equation	18.05.2022	5 Hrs	
•	Separability.			
			5 Hrs	

D. ACTIVITIES:

Activities Name	Details
Test	Unit Test Date: 25.02.2022, 12.03.2022, 04.04.2022,
	05.05.2022
Assignment	04.04.2022,06.05.2022
Quiz	22.03.2022
Seminar	15.03.2022,27.04.2022
Tutor Ward Meeting	Every Saturday

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs.U.Elayarani
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Numerical Methods with C Programming (P)
Lecture Hours	:	30 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching
		Methodology
• Logics, variables, constants,	The student will be able to	Chalk & Talk
expressions and operators which will	understand,	Method
help them to create programs,	 Declaration of variables, 	• Lecture Method
applications in C.	constants, expressions and	• Discussion Method
• Learning the basic programming	operators.	
construction and functions to modify	• Declaration and uses of functions	
the programs in programming in C.	and arrays.	
• Programming skills to use conditional	• Develop their programming skills	
statements, user defined functions,	with programming environment	
arrays.	with C program structure.	
• The objective of the course is to	• Learn how to obtain numerical	
familiarize the students about different	solution of nonlinear equations	
numerical techniques.	using bisection, secant, Newton	
• Solving algebraic and transcendental	and fixed-point iterations	
equations, large linear system of	methods and convergence	
equations, differential equations,	analysis of these methods.	
approximating functions by	• Solve simultaneous system of	

polynomials upto a given desired	equations numerically.
accuracy, finding approximate value of	• Familiar with calculation and
definite integrals of functions etc. and	interpretation of errors in
to solve numerical problems using C.	numerical method.
	Familiar with programming with
	numerical packages like C
	Progamming.

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
UNIT I	•	Solving a Quadratic	21.02.2022		6 Hrs	-
		Equation.	to			
	•	Sum of series (Sine , Cosine	18.03.2022			
		, e ^x)				
	•	Ascending and descending				
		order of numbers.				
UNIT II	•	Largest and smallest of	21.03.2022		6 Hrs	-
		given numbers.	to			
	•	Sorting names in	04.04.2022			
		alphabetical order.				
	•	Finding factorial, generating				
		Fibonacci numbers using				
		recursive functions.				
UNIT III	•	Matrix Manipulations			6 Hrs	
		(Addition, subtraction and	05.04.2022			
		Multiplication).	to			
	•	Mean Standard Deviation	20.04.2022			
		and Variance.				
	•	Solving equations by				
		Bisection method				

UNIT IV	•	Solving equations by False		6 Hrs	
		position method	21.04.2022		
	•	Solving equations by	to		
		Newton –Raphson method	05.05.2022		
	•	Gauss elimination method of			
		solving simultaneous			
		equations			
UNIT V	•	GAUSS-Seidel method of	06.05.2022	6 Hrs	
		solving simultaneous	to		
		equations	18.05.2022		
	•	Euler method , Trapezoidal			
		and Simpson's 1/3 rd rule of			
		integration			
	•	R-K Fourth order method of			
		solving differential			
		equations.			

D. <u>ACTIVITIES:</u>

Activities Name	Details
Test	Program Test Date: 16.03.2022 , 22.04.2022 and
	06.05.2022
Assignment	
	-
Quiz	
	-
Seminar	
	-
Tutor Ward Meeting	
	Every Saturday

"

R. Dom >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Mrs.U.Elayarani
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Statistical Programming Using SPSS
Lecture Hours	:	30 Hrs

B. ABOUT THE COURSE:

Course Objectives	Course Outcomes	Teaching Methodology
 There are three objectives to the assignment. Securing the SPSS software Securing the data for the SPSS assignments Learning about the SPSS interface 	 On completion of the course, the students will be able to Understand how to start SPSS Define a variety of statistical variables Enter basic data into SPSS Carry out a statistical analysis that can test hypotheses. 	 Chalk & Talk Method Lecture Method

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	• Finding Mean, Median and	21.02.2022	-	6 Hrs	-
	Mode	to			
	• Standard Deviation	18.03.2022			
Unit II	• Simple and Multiple Bar	21.03.2022	-	6 Hrs	-
	Pie Diagram	to			
		04.04.2022			
Unit III	• Histogram	05.04.2022	-	6 Hrs	-
	Correlation	to			
		20.04.2022			
Unit IV	• Regression	21.04.2022	-	6 Hrs	-
	• Paired t Test	to			
		05.05.2022			
Unit V	Chi Square Test	06.05.2022	-	6 Hrs	-
		to			
		18.05.2022			

D. ACTIVITIES:

Activities Name	Details	
Test	Unit Test Date: 15.03.2022 , 21.04.2022	
Assignment	-	
Quiz	-	
Seminar	-	
Tutor Ward Meeting	Every Saturday	

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.L.JENNATHUNNISHA
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Integral Calculus
Lecture Hours / Practical Hours	:	2 Hrs / Week / Lecture Hours-30 hrs

B. ABOUT THE COURSE

Course Objectives	Course Outcomes	Teaching
		Methodology
• To inculcate the basics of	• Find the solutions of the	Power Point
integration.	integral.	• E – Module
• To study some applications	• Solve the integration by	• Chalk & Talk
of definite integrals.	parts.	Method
• To know the techniques for	• Find the area of plane	• Lecture Method
integration.	curves using Cartesian	Discussion
• To find area under plane	and polar coordinates	Method
curves using integration.	• Find the area by	• Study Assignment
• To understand the	changing the given	Method,
consequences of Beta and	order of integration.	Problem Solving
Gamma function	• Understand the	Method
	concepts of Beta and	Seminar Method
	Gamma functions.	Demonstration
		Method point.

C. PLAN OF THE WORK

Unit / Modules	Topic to be covered	Proposed	Lecture	Practical	Remarks
		date	Hours	Hours	
Unit II	Definite integrals		4 hrs		
Content- 12 Hrs	Integration by Parts	21.2.2022	3 hrs		
Assessment -3 Hrs	Reduction formula,	to	6 hrs		
Total - 15 Hrs	Bernoulli's Formula	31.3.2022	2 hr		
					-
Unit V	• Beta & Gamma	04.04.2022	7 hrs		
Content- 12 Hrs	functions and the	to			
Assessment -3 Hrs	relation between them	28.5.2022			
Total - 15Hrs	• Integration using Beta &		8 hrs		
	Gamma functions.			-	-

D. ACTIVITIES

Activities Name	Details
Test	Monthly Test- Unit-I (23.3.2022)
	CIA / Mid Semester – Unit-I , Unit-II and Unit-III(3 Units) (
	18.04.2022 to 25.04.2022)
	CIA / Model Examination -Unit-I – unit V (5 Units)
	(21.05.2022 to 28.05.2022)
	AssignmentI – Unit –I and Unit –II (22.3.20222)
Assignment	Assignment II – Unit –III and Unit – V (10.4.2022 and 22.04.2022)
Quiz	1.04.2022,19.05.2022
Seminar	23.03.2022,4.04.2022,22.04.2022,18.05.2022
Tutorial Ward Meeting	Monthly once
Mentor Mentee Meeting	Weekly once

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.L.JENNATHUNNISHA
Department	:	Mathematics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	Probability Theory
Lecture Hours / Practical Hours	:	4 ½ Hrs / Week / Lecture Hours-45 hrs
Name of the Paper	:	Probability Theory

B. ABOUT THE COURSE

Course Objectives	Course Outcomes	Teaching
		Methodology
• To make a students to	• Interpreted the field	Power Point
understand about fields,	and sigma fields.	• E – Module
and Random variables.	• Analyze the Probability	• Chalk & Talk
• To enable the students to	spaces.	Method
learn about expectations,	• Apply the concepts of	• Lecture Method
convergence in random	random variables and	Discussion
variables and distribution	distributions	Method
functions.	• Describe the ideas of	• Study Assignment
• To provide knowledge of	expectation and	Method,
the probability, random	characteristic functions	Problem Solving
variables, estimation	• Demonstrate the	Method
• To learn MGF,	convergence of random	Seminar Method
Characteristic function and	variables.	Demonstration
limit theorems.		Method
• To understand the		
different types of		
distributions		

C. PLAN OF THE WORK

Unit / Modules	Topic to be covered	Proposed	Lecture	Practical	Remarks
		date	Hours	Hours	
Unit I	Axioms of Probability		2 hrs		
Content- 15 Hrs	Sample Space and events	21.2.2022	2 hrs		
Assessment -3	Some propositions	to	3 hrs		
Hrs	Equally likely events	31.3.2022	6 hrs		
Total - 18 Hrs	• Probability as a continuous		4 hrs	-	
	set function				-
	• Probability as a measure of		1 hr		
	belief				
Unit II	Conditional Probability and	04.04.2022	8hrs		
Content- 15Hrs	independence	to			
Assessment -3	Conditional Probabilities-	28.5.2022			
Hrs	Bayle's Formula		8 hrs		
Total - 18Hrs	• Independent events- P(IF)			-	-
	is a probability		2 hrs		

D. ACTIVITIES

Activities Name	Details
Test	Monthly Test- Unit-I (23.3.2022)
	CIA / Mid Semester – Unit-I , Unit-II and Unit-III(3 Units)
	(18.04.2022 to 25.04.2022)
	CIA / Model Examination -Unit-I – unit V (5 Units)
	(21.05.2022 to 28.05.2022)
Assignment	Assignment I – Unit –I and Unit –II (22.3.2022)
	Assignment II – Unit –III and Unit – V (10.4.2022 and 22.04.2022)
Quiz	1.04.2022,19.05.2022
Seminar	23.03.2022,4.04.2022,22.04.2022,18.05.2022
Tutorial Ward Meeting	Monthly once
Mentor Mentee Meeting	Weekly once

¢

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.L.JENNATHUNNISHA
Department	:	Physics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	Numerical Methods with C++ Programming
Lecture Hours / Practical Hours	:	5 Hrs / Week / Lecture Hours-90 hrs

B. ABOUT THE COURSE

Course Objectives	Course Outcomes	Teaching	
		Methodology	
• To learn numerical methods of	• To equip the students with	Power Point	
computing certain mathematical	sufficient knowledge base of	• E – Module	
quantities, construction and evaluation	physics so that they do not find	• Chalk & Talk	
of a function and solution of an ordinary	any difficulty pursuing higher	Method	
differential equation and C++ Computer	education.	• Lecture Method	
programming necessary for numerical	• Trained practical exposures	Discussion	
simulation of physical problems	which could equip the students	Method	
• Know about the basic theory of errors,	to space the challenges in	• Study	
their analysis, estimation with examples	Physics	Assignment	
of simple experiments in physics	• Demonstrate the convergence	Method,	
• In the laboratory course, learn the	of random variables	Problem Solving	
fundamentals of the C and C++	• Learn how to obtain numerical	Method	
programming languages and their	solution of nonlinear equations	Seminar Method	
Applications in solving simple physical	using bisection, secant, Newton	• Demonstration	
problems involving interpolations,	and fixed-point iterations	Method point.	
differentiations, integration, differential	methods .		
equations as well as finding the roots			

equations	•	Solve simultaneous system of	
		equations numerically.	

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Curve fitting- Method of least		5 Hrs	-	-
		Squares –Exponential and	21.02.2022			
		Power	to			
	•	Interpolation; Newton	05.03.2022	6 Hrs		
		interpolation polynomial				
	•	Lagrange Interpolation		4Hrs		
Unit II	•	Solution of Linear and Non		5Hrs	-	-
		Linear equations. –Gauss	7.03.2022			
		elimination method, Gauss	to			
		Jordon method	22.03.2022			
	•	Inverse of a matrix by Gauss		4Hrs		
		elimination method				
	•	Roots of non linear equations		6Hrs		
		Bisection method , Newton				
		Rapshon method				
Unit III	•	Numerical Integration and		6 Hrs	-	-
		Differentiation ,Trapezoidal	23.03.2022			
		rule and Simpson's rule	to			
	•	Errors in the formula	09.04.2022	4 Hrs		
	•	Composite trapezoidal and		5 Hrs		
		Simpson's rule, Simpson 3/8				
		rule, errors in the formula .				
Unit IV	•	Programming in C++-		5Hrs	-	-
		Constants and variables- I/O	10.04.2022			
		Operators and Statements	to			
	•	Header files-, Main functions,	25.04.2022	5Hrs		

		Conditional Statements-				
		switch statements-Void				
		functions.		5 Hrs		
	•	Function program- For, while				
		and do while statements-				
		Break, continue and go to				
		statements- Arrays.				
Unit V	•	Least Squares Curve fitting-		3Hrs	-	-
		Straight line fit, Least Squares	26.04.2022			
		Curve fitting- exponential fit	to			
	•	One dimentional -Newton	12.05.2022	4 Hrs		
		rapshon Method				
	•	Interpolation -Lagrange		4 Hrs		
		method				
	•	Numerical Integration –				
		Composite trapezoidal rule		4Hrs		
		and Composite simpson's 1/3				
		rule				

E. <u>ACTIVITIES:</u>

Activities Name	Details		
Test	Unit Test Date		
	21.03.2022,10.4.2022,28.04.2022,15.05.2022		
Assignment			
	22.3.2022,10.4.2022, 22.04.2022		
Quiz			
	1.04.2022,19.05.2022 (Objective Type Questions)		
Seminar			
	23.03.2022,11.04.2022,22.04.2022,18.05.2022		
Tutor Ward Meeting	Monthly Once		
Mentor Mentee Meeting	Weekly Once		

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.L.JENNATHUNNISHA
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Environmental Studies
Lecture Hours	:	2 Hrs / Week / Lecture Hours-30 hrs

B. ABOUT THE COURSE

Course Objectives	Course Outcomes	Teaching Methodology
To introduce Real	Learners will be able to	Power Point
Number System	• State the nature of number	• E – Module
• To explore the concepts	system and field axioms	• Chalk & Talk
of neighborhoods and its	• Define open sets, closed sets,	Method
related parameters.	limit points, closure and	Lecture Method
• To define continuous	interior of a set, compactness	Discussion
functions	and connectedness	Method
• To define Derivative and	• Differentiate continuous and	• Study Assignment
algebra of derivatives	discontinuous functions,	Method,
• To derive mean value	uniform continuous	Problem Solving
theorems	functions.	Method
	• State derivative function and	Seminar Method
	Darboux's theorem	Demonstration
	Prove intermediate value	Method
	theorems	

C. PLAN OF THE WORK:

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remark
Modules		date	Hrs	Hrs	S
Unit I	• The multidisciplinary nature of	21.02.2022 to	3Hrs	-	-
	environmental studies	9.03.2022			
	• Scope and importance , Need for				
	public Awareness		3Hrs		
			2.11		
Unit II	Forest Resources: Use and over	10.02.2022.	2 Hrs	-	-
	Exploitation, deforestation timber	10.03.2022 to			
	extraction, mining, clams and their	28.03.2022			
	effects on forests and tribal people.				
	(a) Water Resources: Use and over				
	Exploitation of surface and		2.11		
	ground water		2 Hrs		
	(b) Mineral Resources: Use and				
	over Exploitation,				
	Environmental Effects of				
	extracting and using Mineral				
	Resources.		0.11		
	(c) Food Resources: Changes		2 Hrs		
	caused by agriculture and over				
	grazing effects of modern				
	agriculture, fertilizer – pesticide				
	problems.		4.11		
Unit III	(a) Concept of an Ecosystem	20.02.0002.	1 Hr	-	-
	(b) Structure and function of an	29.03.2022 to	1 Hr		
	Ecosystem	11.04.2022			
	(c) Producers, Consumers and		1 Hr		
	Decomposers				

	(d) Energy flow in the Ecosystem		1 Hr		
	(e) Forest Ecosystem		1 Hr		
	(f) Pond Ecosystem		1 Hr		
Unit IV	Biodiversity – definition – Types –		3 Hrs	-	-
	Genetic species and ecosystem,	12.04.2022 to			
	diversity	25.04.2022			
	• Values of biodiversity		3 Hrs		
	(a) India as a mega – diversity				
	nation				
	Environmental pollution:				
Unit V	• Water conservation, rain water		3 Hrs	-	-
	harvesting and water shed	26.04.2022 to			
	management	9.05.2022			
	Environmental Protection Act		1 Hr		
	(a) Public Awareness				
	(b) Environment and Human		2 Hrs		
	Health				
	(c) Women and Child Care				
	(d) Role of Information Technology				
	in environment and human				
	health.				

D.ACTIVITIES:

Activities Name	Details
Test	Unit Test Date
	21.03.2022,10.4.2022,28.04.2022,15.05.2022
Assignment	22.3.2022,10.4.2022, 22.04.2022
Quiz	1.04.2022,19.05.2022 (Objective Type Questions)
Seminar	23.03.2022,11.04.2022,22.04.2022,18.05.2022 Monthly Once
Tutor Ward Meeting Mentor Mentee Meeting	Weekly Once

"

R. Dom >

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

A. TEACHING PLAN

B. GENERAL INFORMATION

Name of the Faculty	:	Dr.I.Jannathul Firthouse
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Integral Calculus
Lecture Hours	:	60 Hrs

C. <u>ABOUT THE COURSE:</u>

	Course Objectives		Course Outcomes		Teaching Methodology
•	To inculcate the basics of	•	Find the solutions of	•	Power Point
	integration.		the integral.	•	E – Module
•	To study some	•	Solve the integration	•	Chalk & Talk Method
	applications of definite		by parts.	•	Lecture Method
	integrals.	•	Find the area of plane	•	Discussion Method
•	To know the techniques		curves using	•	Study Assignment
	for integration.		Cartesian and polar		Method,
•	To find area under plane		coordinates	•	Problem Solving Method
	curves using integration.	•	Find the area by	•	Seminar Method
•	To understand the		changing the given	•	Demonstration Method
	consequences of Beta		order of integration		
	and Gamma function.	•	Understand the		
			concepts of Beta and		
			Gamma functions		

D. <u>PLAN OF THE WORK:</u>

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Definition of Integrals and	21.02.2022	1Hrs	-	-
		examples	to			
	•	Revision of all integrals	05.03.2022	4Hrs		
	•	Simple Problems		4Hrs		
Unit III	•	Geometrical Applications of	07.03.2022	3Hrs	-	-
		Integration	to	4Hrs		
	•	Area Under Plane Curve	09.04.2022	4Hrs		
	•	Cartesian Coordinates		4Hrs		
	•	Area of a closed Curve				
	•	Area in Polar coordinates				
Unit IV	•	Double Integrals		4Hrs	-	-
	•	Changing the order of	10.04.2022	5Hrs		
		Integration	to	3 Hrs		
	•	Triple Integrals	12.05.2022	3Hrs		

E. <u>ACTIVITIES:</u>

Activities Name	Details
Test	Unit Test Date: 22.03.2022, 11.04.2022,27.04.2022,14.5.22
Assignment	21.03.2022, 8.04.2022, 20.04.2022
Quiz	02.04.2022,20.05.2022
Seminar	23.03.2022,11.04.2022,22.04.2022,18.05.2022
Tutor Ward Meeting	Monthly Once

"

R. Dom >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.I.Jannathul Firthouse
Department	:	Mathematics
Programme	:	B.Sc(Computer Science)
Programme Code	:	UCS
Name of the Paper	:	Allied Operations Research
Lecture Hours	:	60 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching
		Methodology
• To define and formulate	Formulate the given simplified	Power Point
linear programming problems	description of a suitable real work	• E – Module
and appreciate their	problem as a linear programming	• Chalk & Talk
limitation	models in general , standard and	Method
• To train the students in	canonical forms	Lecture Method
network problems.	Solve Transportation and assignment	Discussion Method
• To train the students to solve	Problems	Study Assignment
the assignment problems,	Know Principles of Construction of	Method,
transportation problems.	Mathematical; Model of Conflicting	Problem Solving
• To solve LPP using	situations and Mathematical Analysis	Method
appropriate techniques and	Methods of Operations Research be	Seminar Method
optimization solvers.	able to choose rational option in	Demonstration
• To develop mathematical	practical decision making problems	Method
skills to analyzed and solved	using standard mathematical models	
integer programming and	of Operations Research	
network models arising from	Have Skills in Analysis of Operations	
a wide range of applications.	Research objectives , Mathematical	
	Methods and Computerized systems	

C. <u>PLAN OF THE WORK:</u>

Unit /	Topi	c to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	• Definiti	on of L.P.P and	21.02.2022	2Hrs	-	-
	Graphic	cal Solution Method	to			
	• Charact	eristic Feature of	05.03.2022	5Hrs		
	O.R					
	• Canonio	cal and Standard		4Hrs		
	form of	0.R				
	• Linear	programming		4Hrs		
	formula	ations and graphical				
	solution	n of two variables-				
	Canonio	cal and Standard				
	forms o	of LPP .				
Unit II	• Simplex	x method	07.03.2022	3Hrs	-	-
	• Simplex	x method for <,=,>	to			
	constra	ints	22.03.2022	4Hrs		
	• Charner	r's method of				
	penaltie	es		4Hrs		
	• Two ph	ase simplex method				
				4Hrs		
Unit III	• Transpo	ortation problems		4Hrs	-	-
	• Mathem	natical formulation of	23.03.2022			
	the probl	em	to	4Hrs		
	• Degene	racy Transportation	09.04.2022			
	problem					
	• Transpo	ortation Algorithm		4Hrs		
	• Unbalar	nced transportation				
	Problem-	Assignment				
	algorithm	1		3Hrs		

Unit IV	Sequencing Problems		4Hrs	-	-
	• Processing of n jobs	10.04.2022	5Hrs		
	through two machines	to			
	• Processing of n jobs and k	25.04.2022	3 Hrs		
	machines				
	• Processing of 2 jobs and		3Hrs		
	through m machines				
Unit V	Networks	26.04.2022	3 Hrs	-	-
	Rules of Network	to	4Hrs		
	Construction	12.05.2022			
	• Time calculations in		4Hrs		
	Networks				
	CPM computation		4Hrs		

D. ACTIVITIES:

Details		
2,28.04.2022,15.5.22		
.04.2022		
22		
22,18.05.2022		

•

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Dr.I.Jannathul Firthouse
Department	:	Mathematics
Programme	:	M.Sc
Programme Code	:	PSM
Name of the Paper	:	Probability Theory
Lecture Hours	:	45 Hrs

B. ABOUT THE COURSE:

Course Objectives	Course Outcomes	Teaching Methodology
• To make the students to	Acquire the knowledge of	Power Point
understand about fields, σ -	random variables, distribution.	• E – Module
fields and random	• Understand the concept of	• Chalk & Talk Method
variables.	expectation, characteristics	• Lecture Method
• To enable the students to	function.	• Discussion Method
learn about expectations,	Demonstrate on Chebyshev	• Study Assignment
convergence in random	inequality and various	Method
variables and distribution	distributions .	Problem Solving
functions.	• Apply limit theorems to analyze	Method
• To provide the knowledge	stochastic convergence	Seminar Method
of the Probability, Random	Calculate probabilities by	Demonstration
Variables, estimation,	applying probability laws and	Method
• To learn MGF,	theoretical results.	
characteristics function and		
limit theorems.		
• To understand different		
type of distributions.		

<u>C. PLAN OF THE WORK:</u>

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit III	Random variables		4Hrs	-	-
	• Distribution functions	21.02.2022 to			
	• Discrete random variables	05.03.2022	4Hrs		
	Expected Value				
	• Expectation of a function of		4Hrs		
	random variable				
	• Variance		3Hrs		
	Binomial random variable				
Unit IV	Continuous random		4Hrs	-	-
	variables	06.03.2022 to			
	• Expectation and variance of	20.03.2022	3Hrs		
	continuous random				
	variables		4Hrs		
	• The uniform and normal				
	random variables		4Hrs		
Unit V	Jointly Distributed Random		3Hrs	-	-
	Variables	22.03.2022 to			
	• Joint distribution functions	10.04.2022	4Hrs		
	• Independent random				
	Variable		5 Hrs		
	Conditional distributions		3 Hrs		

D.ACTIVITIES:

Details		
Unit Test Date: 20.03.2022,11.04.2022,24.04.2022		
14.03.2022, 16.04.2022,12.5.22		
27.04.2022		
15.04.2022 to 25.04.2022		
Monthly Once		

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms.P.Udhaya
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Mechanics
Lecture Hours	:	90 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching Methodology
• To make the learners	At the end of the course	Power Point
to known the	learners will	• E – Module
importance of this	• Understand and	• Chalk & Talk Method
subject in the field of	demonstrate the	Lecture Method
Mechanics.	Equilibrium of a	Discussion Method
• To provide the basic	particle in static and	Study Assignment
knowledge of	dynamic.	Method,
Equilibrium of a particle	• Demonstrate and	Problem Solving
and Rigid bodies.	understands about the	Method
• To learn the effect of	clear concept of	Seminar Method
Hanging strings and	Hanging strings and	Demonstration Method
Suspension bridge.	suspension bridge.	
	• Have a clear clarification	
• To help the learners to	in the Impact of spheres	
study about the	and Impulsive forces.	
Impact, Impulsive		
forces and to about the	• Require good	
Central Objects and the	knowledge and	
	understanding in the	

	basics of Moment of		Central	Orbit	and
	Inertia.		Moment o	of Inertia.	
•	To develop a working	•	Positive	analysis	and
	knowledge to handle		solve	the pr	actical
	practical problems.		problems	of stati	c and
			dynamic		

C. <u>PLAN OF THE WORK:</u>

Unit /	Т	opic to be covered	Proposed	Lecture	Practical	Remarks
Modul			date	Hrs	Hrs	
es						
Unit I	•	Equilibrium of a	09.08.2021	4 Hrs	-	-
		Particle, triangle of	to	3 Hrs		
		Forces	26.08.2021			
	•	Lami's Theorem		4 Hrs		
	•	Moment of a Force		4 Hrs		
	•	General Motion of a				
		Rigid Body Parallel				
		Forces				
	•	Varigon's Theorem				
	•	Forces along the				
		sides of a triangle				
	•	Couples.				
Unit II	•	Hanging strings	27.08.2021	4 Hrs	-	-
	•	Equilibrium of a	to	2 Hrs		
		uniform	03.09.2021	2 Hrs		
		homogeneous		4 Hrs		
		strings Suspension		3 Hrs		
		bridge				
	•	Simple Problems.				
Unit III	•	Rectilinear motions	04.09.2021	5 Hrs	-	-

			4 11		
	under varying force	to	4 Hrs		
	Simple Harmonic	23.09.2021	2 Hrs		
	Motion S.H.M along a		4 Hrs		
	horizontal line				
	• S.H.M. along a				
	vertical line				
	Projectiles				
	• Forces on a				
	Projectiles				
	Projectile projected				
	on an inclined plane				
	• Enveloping Parabola				
Unit IV	• Impact	25.09.2021	5 Hrs	-	-
	Impulsive Force	to	5 Hrs		
	• Impact of Spheres	13.10.2021	5 Hrs		
	• Impact of two smooth				
	spheres				
Unit V	<u> </u>			1	
1	Central orbits	18.10.2021	3 Hrs		-
	Central orbitsGeneral orbits	18.10.2021 to	3 Hrs		-
			3 Hrs		-
	General orbits	to	3 Hrs 4 Hrs		-
	General orbitsCentral orbit	to			_
	General orbitsCentral orbitConic as a centered	to			_
	 General orbits Central orbit Conic as a centered orbit Moment of Inertia 	to	4 Hrs		_

ACTIVITIES:

Activities Name	Details		
Test	Unit Test: 23.08.2021,16.09.2021,07.10.21		
Assignment	28.08.2021,01.10.2021		
Quiz	21.09.2021		
Seminar	30.11.2021 to 18.12.2021		
Tutor Ward Meeting	Monthly Once		
Mentor Mentee Meeting	Weekly Once		

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms.P.Udhaya
Department	:	Mathematics
Programme	:	B.sc
Programme Code	:	USM
Name of the Paper	:	Quantitative Aptitude
Lecture Hours	:	24 Hrs

A. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching
		Methodology
To learn the problems solving	• Solve the problems based on	Power Point
techniques for aptitude problems	numbers.	• E – Module
To enable to learners prepare	• Understand the concept of	• Chalk & Talk
themselves for various competitive	number and alphabet series	Method
examinations.	and analogy	• Lecture Method
To enhance the problem solving	• Solving problems on coding	Discussion
skills, to improve the basic	and blood relations.	Method
mathematical skills and to help	Solving problems on	• Study
learners who are preparing for any	sequential output tracing	Assignment
type of competitive examinations.	and direction sense test.	Method,
Arithmetic ability test helps measure	• Solving puzzle problems.	• Problem Solving
one's numerical ability.		Method
Quantitative aptitude questions		Seminar Method
includes ranking from pure numeric		
calculations to critical arithmetic		
reasoning.		

B. <u>PLAN OF THE WORK:</u>

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	Blood Relation	09.08.2021	2 Hrs	-	-
	Puzzle Test	to	2 Hrs		
		26.08.2021	2 Hrs		
Unit II	• Number, Ranking and Time	27.08.2021	2 Hrs	-	-
	Series Test	to	2 Hrs		
	Mathematical Operations	03.09.2021	2 Hrs		
Unit III	Arithmetical Reasoning	04.09.2021	2 Hrs	-	-
		to	2 Hrs		
		23.09.2021			
Unit IV	Inserting the Missing	25.09.2021	2 Hrs	-	-
	character	to	2 Hrs		
		13.10.2021			
Unit V	Data sufficiency	18.10.2021	2 Hrs	-	-
	• Logical Sequence of Words.	to	2 Hrs		
		24.11.2021			

C. <u>ACTIVITIES:</u>

Activities Name	Details	
Test	Unit Test: 17.09.2021,07.10.21	
Assignment	28.08.2021,04.10.2021	
Quiz	21.09.2021	
Seminar	30.11.2021 to 18.12.2021	
Tutor Ward Meeting	Monthly Once	
Mentor Mentee Meeting	Weekly Once	

¢

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms.P.Udhaya
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Algebra and Calculus
Lecture Hours	:	90 Hrs

B. ABOUT THE COURSE:

Course Objectives	Course Outcomes	Teaching
		Methodology
To train the students to solve	Develop Critical thinking and	Power Point
the problems in the Theory	problem solving skills in the context of	• E – Module
of equations.	Algebra and Calculus	• Chalk & Talk
• To apply the matrix models	• Develop an appreciation of Matrix	Method
in Economics, Engineering,	Models in Economics , Engineering and	Lecture Method
Physical, Environmental and	Physical Environmental and Life science	Discussion
Life science.	• Explain the significance of the	Method
• To identify the extreme of a	derivatives and able to apply techniques	• Study
function of an internal and	for the derivatives in Engineering and	Assignment
classify them as minima,	sciences	Method
maxima or saddles using the	• To Find Maxima and Minima ,	Problem Solving
first derivation test	Critical Points and Inflection Points of	Method
• To learn the basic concepts	Function and to determine the	Seminar Method
in the integration.	concavity of curves	
• To learn the basic concepts	• Solve Basic applications Problems	
in the differential equations.	described by second Order Linear	
	Differential equations with constant	
	coefficient	

C. <u>PLAN OF THE WORK:</u>

	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	• Relation between roots and	09.08.2021	4 Hrs	-	-
	coefficients	to	3 Hrs		
	• transformations of equations	26.08.2021			
	• diminishing , increasing and		4 Hrs		
	multiplying the roots by a constant		4 Hrs		
	• forming equations with the given				
	roots				
	• Descartes' rule of sign				
Unit II	Singular matrices	27.08.2021	4 Hrs	-	-
	• Inverse of a non singular matrix	to	2 Hrs		
	using Adjoint method	03.09.2021			
	• Rank of a matrix		2 Hrs		
	• Characteristic equation , Eigen				
	value , Eigen vectors		4 Hrs		
	• Cayley Hamilton theorem (proof		3 Hrs		
	not needed)				
Unit III	Maxima and Minima	04.09.2021	5 Hrs	-	-
	• concavity ,Convexity	to23.09.2021	4 Hrs		
	• Points of inflexion				
	Partial Differentiations		2 Hrs		
	• Euler's theorem				
	• Total differential coefficients		4 Hrs		
	• Simple problems .				
Unit IV	• Evaluation of integrals f types	25.09.2021	4 Hrs	-	-
		to13.10.2021			
	1). $\int \frac{px+q}{ax^2+bx+c} dx = 2$). $\int \frac{px+q}{\sqrt{ax^2+bx+c}} = 3$).		3 Hrs		

	$\int \frac{dx}{a+bsinx} \qquad 4)\int \frac{dx}{a+bcosx}$				
	 Evaluation using integration by parts- properties of definite integrals Fourier series in the range (0, 2π) Odd & even functions Fourier Half range sine & cosine series. 		4 Hrs 4 Hrs		
Unit V	Variable separable	18.10.2021	4 Hrs	-	-
	Linear equation	to	2 Hrs		
	• second order of types (aD ² +bD+	24.11.2021			
	c)y=F(X) where a ,b ,c are		2 Hrs		
	constants and F(X) is one of the				
	following types (i) e^{kx} (ii)sin(kx) or		4 Hrs		
	cos(kx) (iii) X ⁿ , n being an integer		3 Hrs		
	(iv)e ^{kx} f(x).				

D. ACTIVITIES:

Activities Name	Details
Test	Unit Test: 23.08.2021,123.09.2021,18.10.21
Assignment	28.08.2021,01.10.2021
Quiz	21.09.2021
Seminar	30.11.2021 to 18.12.2021
Tutor Ward Meeting	Monthly Once
Mentor Mentee Meeting	Weekly Once

6

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms. S.P.Nivetha
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Analytical geometry of 3D
Lecture Hours	:	60 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching Methodology
 To familiarize with the three dimensional surfaces and their properties. To study the straight lines and its properties. To learn the system of spheres generated by a sphere and plane. To know the concepts of cone, the tangent lines and tangent plane at a point. To inculcate the basics of cylinder along with their properties. 	 On the completion of the Course, Learners will be able to Understand the three dimensional space, angle between lines and planes. Find the coplanar lines, skew lines and to find shortest distance between them. Formulate the equation of sphere and their properties. Form the equation of cone with a conic as guiding curve and the tangent lines. Retrieve the equation of cylinder and rig ht circular cylinder. 	 Power Point E - Module Chalk & Talk Method Lecture Method Discussion Method Study Assignment Method, Problem Solving Method Seminar Method Demonstration Method

C. <u>PLAN OF THE WORK:</u>

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit I	• Coordinates in Space –	21.02.2022	4 Hrs	-	-
	Direction cosines of a line	to			
	in space	05.03.2022			
	• Angle between lines in		4 Hrs		
	space –Equation of a plane				
	in normal form				
	• Angle between planes-		4 Hrs		
	Distance of a plane from a				
	point				
Unit II	• Straight lines in space –	07.03.2022	4 Hrs	-	-
	line of intersection of	to			
	planes – plane containing a	22.03.2022			
	line				
	• Coplanar lines – Skew lines		4 Hrs		
	and shortest distance				
	between skew lines		4 Hrs		
	• Length of the				
	perpendicular from point				
	to line.				
Unit III	General equation of a		4 Hr	-	-
	sphere- Section of sphere	23.03.2022			
	by plane -tangent planes	to			
	• Condition of tangency –	09.04.2022	4 Hr		
	system of spheres				
	generated by two spheres				
	• System of spheres		4 Hrs		
	generated by a sphere and				
	plane.				

Unit IV	• Equation of a Cone with a	10.04.2022	4 Hrs	-	-
	conic as guiding curve –	to			
	Quadric Cones with vertex	25.04.2022			
	at origin				
	• Condition that the general		4 Hrs		
	equation of the second				
	degree should represent a				
	cone		4 Hrs		
	• The tangent lines and				
	tangent plane at a point.				
Unit V	• Equation of a Cylinder	26.04.2022	4 Hrs	-	-
	• Enveloping cylinder – the	to	4 Hrs		
	right circular cylinder	12.05.2022			
	• Equation of a right circular		4 Hrs		
	cylinder.				

ACTIVITIES:

Activities Name	Details
Test	Unit Test Date: 25.03.2022, 11.04.2022,15.05.2022
Assignment	22.03.2022, 10.04.2022.22.04.2022
Quiz	01.04.2022,19.05.2022(Objective Type Questions)
Seminar	23.03.2022,11.04.2022,22.04.2022,18.05.2022
Tutor Ward Meeting	Monthly Once

(

R. Don

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms. S.P.Nivetha
Department		: Mathematics
Programme		: B.Sc
Programme Code		: USM
Name of the Paper		: Numerical methods and statistics
Lecture Hours		: 60 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching
		Methodology
• To objectives of studying this	• To train the students in the	Power Point
module are to make familiarizes	numerical problems.	• E – Module
with the ways of solving	• To train the students in solving	• Chalk & Talk
complicated mathematical	statistical problems.	Method
problems Numerically	• To implement numerical	• Lecture Method
• To implement the Numerical	methods.	• Discussion Method
methods in computational	• To apply numerical methods to	• Study Assignment
Problems	obtain approximate solutions to	Method,
• To Understand of the several	mathematical problems.	Problem Solving
available solutions of equations in	• To make the students gain wide	Method
one variable	knowledge in numerical methods	Seminar Method
• Demonstrate the knowledge of	and statistical.	• Demonstration
probability and the standard		Method
statistical distributions.		
• Demonstrate the ability to apply		
linear, Non linear and		
Generalized linear methods.		

C. PLAN OF THE WORK:

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Algebra and trancendal	25.02.2022	2 Hrs	-	-
		numbers	to			
	•	Bisection method	08.03.2022	3 Hrs		
	•	Iteration method				
	•	Newton backward and		2 Hrs		
		forward interpolation				
	•	Lagrange's interpolation.		2 Hrs		
Unit II	•	Numerical differentiation	18.03.2022	3 Hrs	-	-
		and integration	to			
	•	Trapezoidal rule	28.03.2022	3 Hrs		
	•	Simpson's rule				
	•	Guass elimination method		3 Hrs		
	•	Guass Jacobi method				
Unit III	•	Numerical solution of		3 Hrs	-	-
		ordinary differential	31.03.2022	3 Hrs		
		equation	to			
	•	Runge kutta 2^{nd} order and 4^{th}	08.04.2022	3 Hrs		
		order.				
Unit IV	•	Measures of central tendency	10.04.2022	2 Hrs	-	-
	•	Arithmetic mean	to	2 Hrs		
	•	Measures of dispersion	25.04.2022			
	•	Quartile deviation		3 Hrs		
	•	Co efficient of variation		2 Hrs		
Unit V	•	Correlations	26.04.2022	3 Hrs	-	-
	•	Karl pearsons coefficient	to	3 Hrs		
	•	Spearman's rank correlation	12.05.2022			
	•	Simple problems.		3 Hrs		

D. ACTIVITIES:

Activities Name	Details	
Test	Unit Test Date: 30.03.2022, 09.04.2022,27.04.2022	
Assignment	22.03.2022, 10.04.2022.22.04.2022	
Quiz	01.04.2022,19.05.2022	
Seminar	23.03.2022,11.04.2022,22.04.2022,18.05.2022	
Tutor Ward Meeting	Monthly Once	
Mentor Mentee Meeting	Weekly Once	

"

R. Don >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms. S.P.Nivetha
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Calculus and Vector calculus
Lecture Hours	:	60 Hrs

B. <u>ABOUT THE COURSE:</u>

Course Objectives	Course Outcomes	Teaching Methodology
• To differentiate the	On completion of the course, the student	Power Point
given function using	will be able	• E – Module
Leibnitz Theorem	• To calculate the nth derivatives of the	• Chalk & Talk Method
• To introduce the	function.	• Lecture Method
notion of curvature,	• To sketch curves in Cartesian co	• Discussion Method
radius of curvature	ordinate systems.	• Study Assignment
and Jacobians.	• To apply the reduction formulae for	Method,
• To integrate using	finding integration.	Problem Solving
Bernoulli formula	• To find the area by changing the	Method
• To study the	given order of integrations.	Seminar Method
differentiation of	• To understand the various properties	Demonstration
vectors.	of vector differentiation using	Method
• To integrate simply	Laplacian operator.	
by changing the		
order of the given		
integrations.		

C. <u>PLAN OF THE WORK:</u>

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Differentiation of the n th	04.01.2022	6 hrs	-	-
		derivative	to			
	•	Total differentiation	20.01.2022	3 hrs		
Unit II	•	Curvature	25.01.2022	3 Hrs	-	-
	•	Radius of curvature	to	3 Hrs		
	•	Jacobians of two or three	08.02.2022	3 Hrs		
		variables				
Unit III	•	Integration	11.02.2022	3 Hrs	-	-
	•	Double integrals	to	3 Hrs		
	•	Triple integrals	26.02.2022	3 Hrs		
Unit IV	•	General properties of integrals	01.03.2022	2 Hrs	-	-
	•	Evaluation of integrals with	to	3Hrs		
		some types	11.03.2022			
	•	Reduction		3 Hrs		
Unit V	•	Fourier series	12.03.2022	3 Hrs	-	-
	•	Finding fourier coefficient	to	3 Hrs		
	•	Periodic function with 2π & 2l	29.03.2022	3 Hrs		
	•	Use ofd Even and Odd				
		functions				
	•	Half range sine & cosine series				

D. <u>ACTIVITIES:</u>

E.

Activities Name	Details
Test	Unit Test Date: 21.03.2022, 09.04.2022,15.05.2022
Assignment	22.03.2022, 10.04.2022.22.04.2022
Quiz	01.04.2022,19.05.2022
Seminar	23.03.2022,11.04.2022,22.04.2022,18.05.2022
Tutor Ward Meeting	Monthly Once
Mentor Mentee Meeting	Weekly Once

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms. S.P.Nivetha
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Mathematics for competitive examinations II
Lecture Hours	:	30 Hrs

B. ABOUT THE COURSE:

Course Objectives	Course Outcomes	Teaching Methodology
• To learn the problems	On the completion of the Course,	Power Point
solving techniques for	students will be able to	• E – Module
aptitude problems.	• Understand the basic	• Chalk & Talk Method
• To enable the students	concept of quantitative	• Lecture Method
prepare themselves for	ability.	• Discussion Method
various competitive	• Understand the knowledge of	• Study Assignment
examinations.	mathematical operations	Method,
• To develop and maintain	Decipher arithmetical	Problem Solving
problem solving skills.	reasoning.	Method
• To train them by	• Solve logical reasoning.	Seminar Method
conducting aptitude test	Crack competitive	Demonstration
based on verbal and	examinations	Method
quantitative skills.		
• To enhance the	•	
employability skills of		
students.		

C. PLAN OF THE WORK:

Unit /		Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules			date	Hrs	Hrs	
Unit I	•	Number, Ranking and Time	01.03.2022		-	-
		series Test:	to			
	•	Number Test	02.03.2022	1 Hrs		
	•	Ranking Test		1 Hrs		
	•	Time sequence test		1 Hrs		
Unit II	•	Mathematical Operations:	19.03.2022		-	-
	•	Problem solving by	to	1 Hrs		
		substitution.	21.03.2022			
	•	Interchange of signs and		1 Hrs		
		numbers.				
	•	Deriving the appropriate		1 Hrs		
		conclusion.				
Unit III	•	Arithmetical Reasoning;			-	-
	•	Calculation based problems-	28.03.2022	1 Hr		
		Data based question	to			
	•	Problem on ages	29.03.2022	1 Hr		
	•	Venn diagram based questions		1 Hrs		
Unit IV	•	Inserting the missing	05.04.2022	3 Hrs	-	-
		characters	to			
			06.04.2022			
Unit V	•	Data sufficiency	10.05.2022	1 Hrs	-	-
	•	Logical sequencing words	to	1 Hrs		
	•	Logical Reasoning	11.05.2022	1 Hrs		

D. <u>ACTIVITIES:</u>

Activities Name	Details
Test	Unit Test Date: 25.01.2022, 10.02.2022,
Assignment	03.03.2022
Quiz	21.01.2022, 10.02.2022, 13.03.2022
Seminar	09.03.2022,16.03.2022(Objective Type
Tutor Ward Meeting	Questions)
	23.01.2022,10.02.2022,02.03.2022,17.03.2022
	Monthly Once

"

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	:	Ms.S.P.Nivetha
Department	:	Mathematics
Programme	:	B.Sc
Programme Code	:	USM
Name of the Paper	:	Gender studies
Lecture Hours	:	12 hrs

B. <u>ABOUT THE COURSE:</u>

Course Outcomes	Teaching Methodology	
	Power Point	
	✤ E – Module	
	Chalk & Talk Method	
	 Lecture Method 	
	 Discussion Method 	
	 Study Assignment 	
	Method,	
	Problem Solving Method	
	 Seminar Method 	
	 Demonstration Method 	
	Course Outcomes	

C. <u>PLAN OF THE WORK:</u>

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hrs	Hrs	
Unit-I	Concepts of Gender	21.02.2022	1 hrs		
		to			
		05.03.2022			
Unit-II	Women's Studies VS Gender	07.03.2022	1 hrs		
	studies	to			
		15.02.2022			
Unit-III	Areas of Gender studies	18.03.2022	1 hrs		
		to			
		28.03.2022			
Unit-IV	Women Development and	05.04.2022	1 hrs		
	Gender Empowerment	to			
		13.04.2022			
Unit-V	Womens Movements and	02.05.2022	1 hrs		
	Safeguarding Mechanism	to			
		21.05.2022			

D. ACTIVITIES:

Details		
Unit Test Date: 28.03.2022 and 23.04.2022		
29.03.2022, 25.04.2022		
19.05.2022 (Objective Type Questions)		
27.03.2022, 05.04.2022, 29.04.2022		

"

R. Don >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.